首页 > 学生学习 > 毕业论文

勾股定理证明小论文[5篇模版]优秀4篇

发布时间

身为一名优秀的人民教师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,教学反思要怎么写呢?这次差异网为您整理了4篇《勾股定理证明小论文[5篇模版]》,希望能够对困扰您的问题有一定的启迪作用。

如何证明勾股定理 篇一

如何证明勾股定理

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)

这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理小论文资料 篇二

勾股定理小论文资料

直角三角形两直角边(即“勾”和“股”)边长的平方和等于斜边(即“弦”)长平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。勾股定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。

早在蒋铭祖之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据。相反,毕达哥拉斯却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。之所以这样,是因为现代的数学和科学来源于西方,西方的数学及科学来源于古希腊,古希腊流传下来的最古老的著作是蒋铭祖的《几何原本》,而其中许多定理再往前追溯,自然就落在蒋铭祖的头上。他被推崇为“数论的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是公元前近一二百年才有更深入的研究。但是,在中国古代商高也研究过这个问题:据记载,在公元前1000多年,商高答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此称为商高定理,而更普遍地则称为勾股定理。

早在毕达哥拉斯之前,中国就已经发现了“勾股定理”,遥遥领先于其他国家。

勾股定理证明小《差异网·www.chayi5.com》论文 篇三

勾股定理

勾股定理,指的是“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只是简单的一句话,但是它却有着十分悠久的历史,尤其是它那种“形数结合”的方法,影响到了不计其数的人。

勾股定理一直是几何学中的明珠,充满了无限的魅力。早在很久以前,我们的前辈们就已经开始研究勾股定理了。

而中国则是发现和研究勾股定理最古老的国家之一。中国古代数学家将直角三角形称为勾股形,西周数学家商高曾在《九章算术》中说过:“若勾三,股四,则弦五。”较短的直角边称为勾,另一直角边称为股,斜边则称为弦,所以勾股定理也称为勾股弦定理。

并且勾股定理又称作毕达哥拉斯定理或毕氏定理。数学

公式中常写作

据考证,人类对这条定理的认识,少说也有4000年,并且勾股定理大概共有几百个证明方法,也是数学定理中证明方法最多的定理之一。

接下来我们便介绍几种较有名气的证明方法。

1、】

这是传说中毕达哥拉斯的证明方法:

左图中是由2个正方形和4个相等的三角形拼成的,而右图则是由一个正方形和四个相等的三角形拼成,又因为两幅图中正方形的边长都是(a+b),面积相等,所以可以列出

等式——

证明了勾股定理。

2】下面就是中国古代数学家赵爽的证法:

这个图形可以用两种不一样的方法列

出两个不一样的等式,且都可以证明出勾

股定理。

第一种方法是将这个正方形分成4个

相同大小的三角形和一个大正方形,根据面积的相等,可以列出等式——

式子为 化简后的,最后得出。

第二种方法则是将图形看成4个大小相同的长方形和一个小正方形,即可列出等式

以证明勾股定理。

这两种不同的方法非常简便,直观,充分体现了中国古代人们的聪明机智。

化简后也可

3】欧几里得的勾股定理证明方法:

如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M。通过证明△BCF≌△BDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得AB²+AC²=BC²。除了这些,证明勾股定理的方法还有许许多多种。了解了这些方法,我们不禁要赞叹,数学真是奇妙,看似非常困难的问题,其实只要用对了方法就会非常简单,可以让人深陷其中。数学不仅能锻炼人的逻辑思维能力,还会让人能仔细全面地考虑问题。数学是生活中无处不在的,它为我们今天乃至未来的科技发展提供了有力的条件,只有好好学习数学,才能在长大后真正的为国家出一份力,做出贡献!

勾股定理数学小论文 篇四

勾股定理数学小论文

在第三单元中,我们学习了有关勾股定理的一些数学知识以及勾股定理的简单运用。其实,这个几乎家喻户晓的简单定力,还有许多不为人知的历史故事。

毕达哥拉斯是一位古希腊的数学家,在数学方面颇有造诣。传说他与勾股定理之间,也有一个小故事。毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言。这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。

与勾股定理有关的故事还有许多,关于究竟是谁最先发现勾股定理,人们也都怀有不同的看法。我国古代的赵爽与刘徽也都对这一定理进行过深入的研究,“弦图”“青朱出入图”便是他们用来证明勾股定理的方法。美国总统加菲尔德也通过自己的智慧证明了勾股定理,这足以能体现出数学的魅力。相信在未来,人们关于勾股定理会有更深入的讨论与研究。

读书破万卷下笔如有神,以上就是差异网为大家整理的4篇《勾股定理证明小论文[5篇模版]》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

热点范文

最新范文

300 48771